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1. INTRODUCTION 

Academicians as well as industrialists have great interest in the development of inventory control and 

their uses. There are many goods that are either deteriorates or become obsolete with passage of time, 

such perishable products have different modeling. Perishable inventory forms a small portion of the 

total inventory. The perishable inventory items can be classified into three categories: (1) 

deterioration (2) obsolescence (3) no deterioration or no obsolescence. Obsolescence occurs due to the 

arrival of new and better products in the market. 

In the existing literature several inventory models were constructed by several researchers based on 

the market demand. They have assumed that the demand rate is either constant or an increasing or 

decreasing function of time or stock dependent. The demand of newly launched products, such as 

fashionable garments, electronic items, mobiles, motor vehicles etc. increases with time and later it 

becomes constant.  

Rosenberg [1979] presented a lot-size inventory model for deteriorating items with partial 

backlogging. Billington [1987] developed an economic production quantity model by considering 

ordering cost as a function of capital expenditure. Urban [1995] presented an inventory model of 

deteriorating items with stock dependent demand rate by allowing shortages. Abad [1996] proposed 

an inventory model and studied the optimal pricing and lot sizing conditions of deterioration and 

partial backlogging. Kishan and Mishra [1996] presented an inventory model with exponential 

demand rate. They also considered constant deterioration rate and shortages in their inventory model. 

Teng et al. [1999] proposed a lot-size inventory model for deteriorating items with fluctuating demand 

and allowing shortages. Skouri and Papachristos [2002] developed a continuous review inventory 

model for deteriorating items with time dependent demand rate and partial backlogging. 

Ouyang and Cheng [2005] presented an inventory model of deteriorating items with exponential 

declining demand and partial backlogging. Ouyang et al. [2005] proposed an inventory model for 

deteriorating items with exponential declining demand by allowing shortages.  Chund and Wee [2008] 

discussed the scheduling and replenishment plan for an integrated inventory model of deteriorating 

items with stock dependent selling rate. Jain et al. [2008] developed an inventory model of 

deteriorating items with inventory level declining demand rate and allowing shortages. Mishra et al. 

[2013] proposed an inventory model for deteriorating items with time dependent demand rate and 

holding cost by allowing shortages. Dash et al. [2014] presented an inventory model of deteriorating 
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items with exponential declining demand rate and time varying holding cost. Raj et al. [2015] 

discussed an inventory model for deteriorating items with exponential demand rate and partial 

backlogging. Islam [2015, 2016] developed two inventory models. One of them is a production 

inventory model of deteriorating items with constant demand rate and three types of production rate 

and other is an inventory model with exponential demand rate and constant production rate for the 

products having finite shelf-life. Islam et al. [2015] presented a production inventory model with 

constant production rate and different components of demand. They also considered the product’s 

shelf -life is finite in their inventory model. Ukil et al. [2015] discussed a production inventory model 

with constant production rate and time dependent power demand by considering the finite shelf -life 

of products. Lakshmidevi and Maragatham [2015] developed an inventory model with three rates of 

production and time dependent demand rate and deterioration rate. Ukil and Uddin [2016] proposed a 

production inventory model with constant production rate and linear trend in demand.  

In the present paper, we have developed a production inventory model for weibull deteriorating items 

with constant and exponential demand rate. 

2. ASSUMPTIONS AND NOTATIONS 

We consider the following assumptions and notations corresponding to the developed model. 

1. The demand rate is 
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 where a  and  b  are constants. 

2. The deterioration rate is 
1)(   tt , where  and  are parameters. 

3. The production rate is )(tP , where   is a constant. 

4. Co  is the ordering cost per order. 

5. Ch  is the holding cost per unit per cycle. 

6. Cd  is the deterioration cost per unit per cycle. 

7. T is the cycle length. 

8. 1T  is the time at which production level reaches maximum. 

9. The replenishment rate is finite. 

10.  The lead time is zero. 

11.  ),( 1 TTTC  is the total cost per cycle. 

12.  )(tI  is the inventory level at any time t. 

3. MATHEMATICAL FORMULATION 

Suppose the production starts at time 0T with zero inventory level and becomes maximum 

inventory level Q at time 1TT  . The instantaneous inventory level at any time t in  T,0  is given by 

the following differential equations  
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)()()( tRtPIt
dt

dI
 , putting the values of P(t) and R(t) in this equation, we obtain  

1

1 0),( TtaIt
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   

            (1)
 

With initial boundary condition 
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With initial boundary condition 

QTI )( 1  

The solutions of equations (1) and (2) are given by the equations (3) and (4) respectively. 
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The maximum inventory level Q is obtained by putting 1Tt  in equation (3). We have 

,)()( 1

11

  TaTaQ             (5) 

Putting the value of Q in equation (4),the equation (4) becomes 
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The ordering cost per cycle is  

 CC oO                   (7) 

The holding cost per cycle is  
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The deterioration cost per cycle is  
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4. NUMERICAL EXAMPLE 

Let we consider the following data for parameters of the model in appropriate units  

500,4.0,4.0,15,1,3,3.0,10   CCC dhoba  

5. TABLES & FIGURES 

Table 1. variation of total inventory cost with respect to   

  
1T  T  ),( 1 TTTC  

3  

6  

9  

12  

15  

30.13144  

10.13169  

30.13177  

90.13169  

50.13171  

60.20814  

80.20854  

30.20868  

60.20854  

70.20858  

11100986.4   
11107719.7   
12101941.1   
12105875.1   
12109861.1   

From this table, we see that as we increase the parameter , then the values of TT ,1 and ),( 1 TTTC

are increased. 

                           
Figure 2. variation in ),( 1 TTTC with ,      Figure 3. variation in ),( 1 TTTC with T  

 
Figure 4. variation in ),( 1 TTTC with 1T  
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Table 2. variation in total inventory cost with respect to a  

a  
1T  T  ),( 1 TTTC  

10  

20  

30  

40  

50  

30.13144  

42.6466  

15.4232  

02.3115  

75.2444  

60.20814  

60.10240  

34.6702  

23.4933  

77.3871  

11100986.4   
10104303.9   
10109498.3   
10101079.2   
10102718.1   

From this table, we see that as we increase the parameter a , the values of TT ,1 and ),( 1 TTTC  are 

decreased. 

                    

Figure 5. variation in total cost with 1T ,      Figure 6. variation in total cost with T  

Table 3. variation in total inventory cost with respect to b 

b  
1T  T  ),( 1 TTTC  

3.0  

6.0  

9.0  

2.1  

5.1  

30.13144  

29.6594  

65.4402  

82.3306  

33.2649  

60.20814  

00.10442  

84.6970  

29.5235  

95.4193  

11100986.4   
11109483.9   
10103301.4   
10104915.2   
10106192.1   

From this table, we see that as we increase the parameterb , then the values of TT ,1 and ),( 1 TTTC

are decreased. 

 

Figure 7. variation in total cost with 1T ,      Figure 8. variation in total cost with T  
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6. CONCLUSION  

In this paper, we have developed a production inventory model for weibull deteriorating items with 

two components of demand rate. We see that the parameters is more sensitive than the parameters a
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andb . This is the reason that the products having finite life to be sold as soon as possible in the 

market. Therefore, it is very practical and suitable situation for the products of our daily lives and the 

firm/retailer wants to increase their demand. 
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